Skip to main content

PRF

Kurz galerie

Centre for Polar Ecology

Polar Ecology Course 2022

  • Image 1

  • Image 2

  • Image 3

  • Image 4

  • Image 5

  • Image 6

  • Image 7

  • Image 8

  • Image 9

  • Image 10

  • Image 11

  • Image 12

  • Image 13

  • Image 15

  • Image 14

  • Image 16

  • Image 17

  • Image 18

  • Image 19

  • Image 20

  • Image 21

  • Image 22

Číst dál …Kurz galerie

  • Přečteno: 32789

nabídky kvalifikačních prací - offered topics (2)

Back to Dept. of Chemistry

Na této stránce je možné získat přehled o vypisovaných tématech diplomových prací na Katedře chemie jak v oborech chemických tak i v dalších příbunvých oborech. Díky výhodným podmínkám pro výzkum jsou výsledkem magisterských ale i bakalářských prací na našem ústavu nezřídka vědecké publikace. Jednou z velkých předností PřF JU je možnost (a nutnost) praktické práce již v bakalářském studiu. Pokud máte zájem o určité téma (i takové které není tady nabízené), kontaktujte přímo uvedeného školitele.
You can find offers of bachelor's and master's thesis at our department in chemistry and related fields. FSc USB allows (and requires) practical work already during the Bachelor studies. Thanks to the vast possibilities in research and up-to-date instrumentation, bachelor's and especially master theses usually result in publications in peer-reviewed journals. If you are interested in a specific topic (even a topic which is not offered here), contact please a potential supervisor.

Examples of topics of bachelor and master theses (or doctoral theses)

Pro zadání kvalifikační práce musíte odevzdat vyplněný a podepsaný zadávací protokol, s tím vám pomůže váš/-e školitel/-ka. Pro schválení musíte přinést vyplněný Zadávací protokol bakalářské/magisterské práce se všemi potřebnými podpisy, kromě podpisu vedoucího katedry, sekretářce Katedry chemie, Mgr. Kateřině Žižkové (Bud. C, 2. patro, 01 045, zizkok00 (at) prf.jcu.cz, tel. 38 777 6243). Krátký návod k vyplnění zadávacího protokolu najdete na našich stránkách.

Your supervisor will help you to fill in the assignment protocol, which you can find in documents - forms for students. Next, you need to get all the needed signatures, except the signature of the head of the department and hand in to the secretary of the Dept. of Chemistry (Mrs Zizkova, Bldg C, 1st floor, room 01 045, phone 38 777 6243). A short description helping you to fill in the assignment protocol can be found on our webpage.

Topic Supervisor
Modelling the effect of missense variants in intellectual disability and autism

Supervisor: Mgr. Michaela Fencková, PhD

Co-supervisor: Prof. Ivana Kutá Smatanová, Mgr. Petra Havlíčková

Single gene mutations represent the leading cause of intellectual disability (ID) and autism spectrum disorder (ASD). Missense variants that result in change of one amino acid (AA) in the protein sequence, contribute to disease risk to a similar or even greater degree than likely gene-disruptive mutations but their effect on protein structure and function is not known.

In this project, the student will use PyMOL molecular visualization and modeling system to introduce ~ 50 recurrent ID/ASD missense variants into high-resolution crystal structures of 10 proteins from RCSB Protein Data Bank and determine whether they affect folding and stability of the protein, its interaction with other proteins and molecules or alter the protein function. The results will lay down the basis for functional characterization of the underlying molecular and cognitive mechanisms in vitro and in our pre-clinical Drosophila model. If the student is motivated, he/she may be involved in initiation of these studies.

Glykomický a glykoproteomický profil tkání klíšťat a jiných krevsajících členovců s využitím bioortogonální a Click chemie a hmotnostní spektrometrie / Glycomic and glycoproteomic profile of ticks and other blood-feeding arthropods tissues using bioorthogonal and Click chemistry and mass spectrometry Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript. & Dr. Jarmila Štěrbová & Dr. Filip Dyčka
Analýza N-glykosylačních míst u proteinů krevsajících členovců (bioinformatika) / Analysis of N-glycosylation sites in proteins of blood-feeding arthropods (bioinformatics) Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.
   
   
   
NMR structural studies on proteins of tick-borne pathogens

Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript. & Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript. (with the help of the Austro-Czech RERI-uasb NMR Center, JKU, Linz)

Elektronová mikroskopie fotosyntetických membrán a proteinových komplexů / Electron microscopy of photosynthetic membrane and protein complexes Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.
  Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript. 

Role karotenoidů v ochraně fotosyntetických proteinů před tripletními stavy chlorofylu / The role of carotenoids in protection of photosynthetic proteins from chlorophyll triplet states

Molekuly chlorofylu jsou v autotrofních organismech vždy asociovány s karotenoidy. Funkcí fotosyntetických karotenoidů je jak rozšíření spektrálního okna pro sběr energie tak i ochrana organismu před kyslíkovými radikály, které jsou jinak nechráněným chlorofylem účinně generovány. Vlastnosti této ochranné funkce nejsou zřejmé zejména v případě systémů s 'nestandardními' karotenoidy jako mají některé eukaryotní řasy. V práci budou studovány jak přírodní komplexy, tak syntetické modelové systémy.

  Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript. 
 

Struktura pigment-proteinových komplexů fotosyntetických membrán a jejich funkce / Structure of pigment-protein complexes of photosynthetic membranes and their function

Světlosběrné komplexy jsou pravděpodobně nejdynamičtější součástí fotosyntetických membrán. Pigmenty pro sběr světelné energie jsou drženy proteinovou kostrou v přesných polohách a ve vysoké hustotě (až 0.5 M). Ačkoliv chybné postavení pigmentů může být pro fotosyntetický organismus smrtící, existuje mnoho variant kombinací druhů chlorofylů i karotenoidů. Klíčovou roli ve funkci výsledného komplexu má pak právě proteinový skelet, který lze zkoumat z bioinformatického nebo biochemického pohledu. Zaměřením práce může být jak teoretická analýza vlastností proteinů a srovnání s experimentem tak i sledování dynamiky fotosyntetické membrány v krátkém ( minuty) či dlouhém (dny a týdny) časovém horizontu.

 

  • Dr. Fencková: Modelling the effect of missense variants in intellectual disability and autism

  • Dr. Štěrba: Glycomic and glycoproteomic profile of ticks and other blood-feeding arthropods tissues using bioorthogonal and Click chemistry and mass spectrometry

Číst dál …nabídky kvalifikačních prací - offered topics (2)

  • Přečteno: 13257

topics - entrance examination Biological Chemistry

Back to Dept. of Chemistry

Topics - entrance exam - BSc Biological Chemistry

Mathematics

basic secondary school Mathematics, e.g., functions and graphs, equations, series, vectors, systems of equations

Chemistry

basic secondary school Chemistry, including calculations, e.g., basics of nomenclature of inorganic and organic compounds, basic calculations (molarity, molecular weight, …), periodic table and atomic structure, simple inorganic reactions, pH, basics of biochemistry (nucleotides and nucleic acids, aminoacids and proteins, saccharides). 

English language

 

Topics - entrance exam - MSc Biological Chemistry

Biochemistry

basic secondary school Chemistry, including calculations, e.g., basics of nomenclature of inorganic and organic compounds, basic calculations (molarity, molecular weight, …), periodic table and atomic structure, simple inorganic reactions, pH, basics of biochemistry (nucleotides and nucleic acids, aminoacids and proteins, saccharides). 

Biochemistry 1:

1.Introductory to Biochemistry: The origin of life; Mechanisms of molecular interactions, Metabolism.
2.Biomolecules: Amino acids; Peptides; Proteins; Carbohydrates; Lipids; Nucleic acids.
3. Enzyme catalysis I: Principles of catalysts and enzyme activity.
4. Enzyme catalysis II: Enzyme kinetics; Enzyme properties; Enzyme types.
5. Gene expression and proteosynthesis: Mechanisms of DNA replication; Transcription/the synthesis of RNA; Gene regulation in Procaryotes; Gene regulation in Eucaryotes; Translation/the synthesis of proteins; Posttranslational modification.
6. Biological membranes and membrane transport: Composition and structure; fluidity and assymmetry; transport across membranes; Methods in biomembrane research.
7. Introductory metabolism and bioenergetics: Metabolism; Thermodynamics of energetic metabolism; Biological oxidation; Coupled reactions; Experimental approach.
8. Energetic metabolism I: Carbohydrate metabolism; Compartmentation; Regulation.
9. Energetic metabolism II: The Citric acid cycle; Electron transport; Oxidative phosphorylation.
10. Energetic metabolism III: Lipid metabolism; Nitrogen utilization; Compartmentation.
11. Energetic metabolism IV: Photosynthesis and photosynthetic machinery; Photorespiration; the C4 cycle.
12. Biotransformation: Metabolism of xenobiotics; Mechanisms of biotransformation reactions; Enzymes in biotransformation, Compartmentation and physiological features.
13. Integration and regulation of energetic metabolism: Compartmentation of metabolic pathways; Functinal relatioships between pathways; Regulatory actions; Metabolic check points; Experimental approaches in metabolism.

Biochemistry 2:
1.Introductory to Biochemistry: The origin of life; Mechanisms of molecular interactions, Metabolism.
2.Biomolecules: Amino acids; Peptides; Proteins; Carbohydrates; Lipids; Nucleic acids.
3. Enzyme catalysis I: Principles of catalysts and enzyme activity.
4. Enzyme catalysis II: Enzyme kinetics; Enzyme properties; Enzyme types.
5. Gene expression and proteosynthesis: Mechanisms of DNA replication; Transcription/the synthesis of RNA; Gene regulation in Procaryotes; Gene regulation in Eucaryotes; Translation/the synthesis of proteins; Posttranslational modification.
6. Biological membranes and membrane transport: Composition and structure; fluidity and assymmetry; transport across membranes; Methods in biomembrane research.
7. Introductory metabolism and bioenergetics: Metabolism; Thermodynamics of energetic metabolism; Biological oxidation; Coupled reactions; Experimental approach.
8. Energetic metabolism I: Carbohydrate metabolism; Compartmentation; Regulation.
9. Energetic metabolism II: The Citric acid cycle; Electron transport; Oxidative phosphorylation.
10. Energetic metabolism III: Lipid metabolism; Nitrogen utilization; Compartmentation.
11. Energetic metabolism IV: Photosynthesis and photosynthetic machinery; Photorespiration; the C4 cycle.
12. Biotransformation: Metabolism of xenobiotics; Mechanisms of biotransformation reactions; Enzymes in biotransformation, Compartmentation and physiological features.
13. Integration and regulation of energetic metabolism: Compartmentation of metabolic pathways; Functinal relatioships between pathways; Regulatory actions; Metabolic check points; Experimental approaches in metabolism.

Molecular Biology

Introduction to molecular biology: History and application of molecular biology in today's science.
Molecular structure of genes and chromosome: Molecular definition of a gene, chromosomal organization of genes and noncoding DNA, structural organization of chromosomes.
Basic molecular genetic mechanisms, Replication of DNA: Understanding the central dogma of molecular biology and overview of basic molecular genetic mechanisms. Basic features of DNA replication in vivo.
Transcription and RNA processing, Translation and the genetic code: Principles of transcription in Prokaryotes and Eukaryotes, basic regulation of gene expression at transcriptional and postranscriptional level. Principles of translation, genetic code.
Mutation, DNA repair, and recombination: Molecular basis of mutations, induced mutagenesis, overview of repair mechanisms and principles of recombination.
Regulation of gene expression in Prokaryotes, Eukaryotes and the genetic control of development: Operon, molecular control of transcription in Eukaryotes, gene expression and chromosome organization, mechanisms of regulation of gene expression during development.
Molecular analysis of genes and gene products: Use of recombinant DNA technology to identify genes, molecular diagnosis of human diseases.
Recombinant DNA technology, the polymerase chain reaction: Cloning genes, principle of polymerase chain reaction and its applications.
Basic techniques of molecular biology: Overview of molecular biology techniques and their use in modern research.
Overview of molecular biology applications in modern basic and applied science: Summary of the course in context of using molecular biology in modern research.

General, Organic, and Analytical Chemistry

1. Atomic structure and the periodic table of elements
2. Chemical nomenclature, balancing equations
3. States of matter: gases, liquids, solids.
4. Chemical bonds and weak bonds
5. Solutions - chemistry and physical properties (solubility, solutions of acids and bases, buffer solutions)
6. Solutions - colligative properties
7. Chemical kinetics, mechanisms of reactions
8. Thermodynamics
9. Electrochemistry
10. Methods I: Chromatography, Spectrophotometry
11. Methods II: Potentiometry, Electrophoresis

• Atoms, molecules, bonding, polar and nonpolar molecules, intermolecular forces, solubilities, Lewis structures, preliminary ideas of resonance, arrow formalism, acids and bases.
• Introduction to orbitals, molecular orbital description of bonding, hybridization, structure of methane.
• Alkanes- conformational analysis, structural isomerism and nomenclature, alkyl groups.
• Alkenes- structure and bonding, nomenclature, E-Z notation, hydrogenation, relative stabilities. Alkynes- structure and bonding, relative stabilities, double and triple bonds in rings.
• Dienes and the allyl system, conjugation, introduction to the concept of aromaticity. UV spectroscopy.
• Stereochemistry- chirality, enantiomerism, R-S notation, diastereomerism, optical resolution.
• Ring systems- strain, stereochemistry of cyclohexane, conformational analysis of cyclohexane and its substituted derivatives, bicyclic and polycyclic compounds.
• Nuclear Magnetic Resonance (NMR) spectroscopy.
• Infrared (IR) spectroscopy.
• Alkyl halides, substitution reactions of alkyl halides- SN 2 and SN 1 mechanisms. Elimination reactions- E1 and E2 mechanisms.
• Overview of substitution and elimination reactions, oxidation of alcohols, rates and equilibria, syntheses.
• Acids and bases revisited. Additions to alkenes- mechanism of hydrogen halide additions, regiochemistry, resonance effects, carbocation stabilities, addition of other unsymmetrical reagents, hydroboration, dimerization and polymerization of alkenes.
• Carbocation rearrangements, addition of halogens to alkenes, oxymercuration, epoxidation and chemistry of oxiranes, cyclopropanation, carbenes, ozonolysis, alkene oxidations with permanganate and osmium tetroxide, addition reactions of alkynes.

Tools in the analytical laboratory; Fundamentals of precipitation titrations, acid-base titrations, complexometric titrations, redox titrations (including calculations of titration curves, detection of end points, applications); Theory of potentiometry (redox potential, electromotive force, electrodes of the first and second kind, redox electrodes, indicator and reference electrodes), applications of potentiometry (pH electrode, ion-selective electrodes, potentiometric titrations); Amperometric sensors, amperometric titrations; Coulometric Titrations; Conductometric analysis; Introduction to spectoscopy, instrumentation for molecular absorption spectroscpy in the UV-visible range, atomic spectroscopy, fluorescence spectroscopy, IR spectroscopy. Introduction to chromatographic techniques.

 

English language

Číst dál …topics - entrance examination Biological Chemistry

  • Přečteno: 13964

Organisation of joint master state exam in Biological Chemistry

Back to Dept. of Chemistry

Due to differences in rules at the University of South Bohemia in České Budějovice and Johannes Kepler University in Linz Organisation of joint master state exam in Biological Chemistry had to be adjusted.


The state exam will be located at the institution where the student worked on his/her diploma thesis and will have two parts:

1) Master thesis defence

2) Oral exam consisting of

  • Biochemistry and Molecular Biology (Biology-oriented part of the exam)
  • General Chemistry (Chemistry-oriented part of the exam)
  • Elective subject (subject related to the topic of master thesis)

See below for additional information.

 

Additional information for students working on their theses in Linz:

Students working on their MSc thesis in Linz - you must submit the assignment of the Master's thesis also at USB (not only at JKU), and you must apply for the state exam and defence also at USB (even though you do it at JKU), and you must submit your thesis before the defence also at USB.

 

Constitution of the state exam committee

The state exam committee will consist of at least four members, and at least one will always be from the sister university. The supervisor will be a full member of the state exam committee (according to Linz rules).

For the state exam organised at USB, a committee member from JKU will examine the subject of General Chemistry.

For the state exam organised at JKU, the committee member from USB will examine the subject Biochemistry and Molecular Biology.

Student(s) should contact Dr Štěrba/Prof. Grubhoffer and Prof. Müller regarding the members of the committee in advance.

 

 

The State Final Examination (SFE) is an oral examination with two parts - a knowledge examination from two compulsory areas and one optional area, and a defence of the master's thesis. A committee usually consisting of at least five members verifies the student's knowledge. A representative of the partner university attends each time. Thus, for students who do their thesis at USB, the JKU representative who examines the General Chemistry subject attends the SFE; for students who do their thesis at JKU, the USB representative who examines the Advanced Biology and Biochemistry subject attends the SFE. The teacher of the subject chosen by the student as an Elective subject, or his/her designated representative, is also a member of the SFE committee.
 
The SFE consists of two compulsory and one elective areas.
 
The mandatory areas are:
1. UCH/SN11 Advanced Biology and Biochemistry, which represents the biologically oriented part of SFE, especially the content of the lectures from the courses UCH/020 Gene and Protein Engineering, UCH/013E Principles and Techniques in Biochemistry and Molecular Biology, UCH/060 Computational Chemistry and Molecular Modelling of Biomolecules and UCH/784 Cellular and Molecular Biology 2, supplemented by one selected biological module (according to the student's specialization):
- Biological Elective: Advances in Biological Systems – lectures UCH/045 Glycobiochemistry, KMB/217 Methods of Functional Genomics, KME/723 Immunology, and UCH/052 Xenobiochemistry and Toxicology;
- Biological Elective: Molecular and Developmental Biology – lectures KMB/614 Cell Regulation and Signaling, KPA/604 Molecular Phylogenetics, KMB/759 Genetics the Molecular Approach, and KMB/618 Epigenetics and regulation of gene expression;
- Biological Elective: Structural Biology Techniques – lectures UCH/027 X-Ray Crystallography, UCH/651 Optical Methods in Biochemistry, UFY/EM1 Electron Microscopy I and UFY/EM2 Electron Microscopy II;
2. UCH/SN36 General Chemistry, which represents the chemically oriented part of the SFE. The student chooses one of the chemistry areas according to his/her specialisation, covering either Fundamentals of Chemistry and Technology or one of the chemically oriented modules chosen in Linz. Chemistry Fundamentals subject:
- Fundamentals of Chemistry and Technology for Biological Chemists
- Fundamentals of Chemistry and Technology for Technical Chemists
The reason for the introduction of these two courses is to allow students to transfer between Biological Chemistry and Technical Chemistry at JKU, which are very similar, if students complete some of the required courses (bridge subjects). From the point of view of knowledge, the content of both of these SFE subjects is the same, the two names are given only for formal reasons and cover mainly knowledge from Organic Chemistry III, Advanced Instrumental Analysis, Spectroscopy and Structural Elucidation II.
 
The elective part of the SFE consists of the course UCH/SN12 Biological Chemistry Masters Elective, which is chosen by the students from the courses taken during their master's studies at the university where they worked on their thesis, and which is related to their thesis and thus represents a verification of the students' theoretical knowledge.
 
Furthermore, upon successful completion of the SFE, the student is given credit for the course UCH/786 Master's Examination.

Recommended elective subjects at USB:

Bioenergetics

Gen and Protein Engineering

Enzymology

Protein Chemistry

Electron Microscopy

X-ray Crystalography

Fluorescence spectroscopy

Cell Signaling

Computational Chemistry

Glycobiochemistry

Xenobiochemistry

Immunology

Biopharmacy

Virology

Bioinformatics

Molecular Phylogeny

Číst dál …Organisation of joint master state exam in Biological Chemistry

  • Přečteno: 27113

information on state exams and defences

Back to Dept. of Chemistry

Bachelor state exams and defences

  • state exam - oral examination. Students draw a question (or questions) and then have 30 minutes to talk about it. It usually starts at 8 am. Immediately after the exam, it is announced if the student passed; complete results, including the grades, are usually announced afternoon (depending on the number of students) or the next day in person or by mail. A set of questions for the state exams is available online.
  • defence - 45 minutes are reserved for one student. You need a presentation for a maximum of 12 minutes. The evaluation by the supervisor and the opponent are read after your presentation. Next, you answer the question(s) of the opponent (the answers can be included at the end of the presentation, after the "Thank you" slide). Lastly, you will answer the questions from the commission and the guests. Next, everybody except the commission members (which includes the supervisor) leaves and the commission will discuss the thesis and vote on the grade. The result is announced immediately after the defence.

Master state exams and defences

  • defence is usually the first - 60 minutes reserved for one student. You need a presentation for a maximum of 15 minutes. The evaluation by the supervisor and the opponents are read after your presentation. Next, you answer the opponents' questions (the answers can be included in the presentation after the "Thank you" slide). Lastly, you will answer the questions from the commission and the guests. Next, everybody except the commission members (which includes the supervisor) leaves, and the commission will discuss the thesis and vote on the grade. The result is announced immediately after the defence.
  • state exam - usually after the defence - oral, approximately 15 minutes per subject (3 subjects).

Students working on their MSc thesis in Linz - you must submit the assignment of the Master's thesis also at USB (not only at JKU), and you must apply for the state exam and defence also at USB (even though you do it at JKU), and you must submit your thesis before the defence also at USB.

 

The State Final Examination (SFE) is an oral examination with two parts - a knowledge examination from two compulsory areas and one optional area, and a defence of the master's thesis. A committee usually consisting of at least five members verifies the student's knowledge. A representative of the partner university attends each time. Thus, for students who do their thesis at USB, the JKU representative who examines the General Chemistry subject attends the SFE; for students who do their thesis at JKU, the USB representative who examines the Advanced Biology and Biochemistry subject attends the SFE. The teacher of the subject chosen by the student as an Elective subject, or his/her designated representative, is also a member of the SFE committee.
 
The SFE consists of two compulsory and one elective areas.
 
The mandatory areas are:
1. UCH/SN11 Advanced Biology and Biochemistry, which represents the biologically oriented part of SFE, especially the content of the lectures from the courses UCH/020 Gene and Protein Engineering, UCH/013E Principles and Techniques in Biochemistry and Molecular Biology, UCH/060 Computational Chemistry and Molecular Modelling of Biomolecules and UCH/784 Cellular and Molecular Biology 2, supplemented by one selected biological module (according to the student's specialization):
- Biological Elective: Advances in Biological Systems – lectures UCH/045 Glycobiochemistry, KMB/217 Methods of Functional Genomics, KME/723 Immunology, and UCH/052 Xenobiochemistry and Toxicology;
- Biological Elective: Molecular and Developmental Biology – lectures KMB/614 Cell Regulation and Signaling, KPA/604 Molecular Phylogenetics, KMB/759 Genetics the Molecular Approach, and KMB/618 Epigenetics and regulation of gene expression;
- Biological Elective: Structural Biology Techniques – lectures UCH/027 X-Ray Crystallography, UCH/651 Optical Methods in Biochemistry, UFY/EM1 Electron Microscopy I and UFY/EM2 Electron Microscopy II;
2. UCH/SN36 General Chemistry, which represents the chemically oriented part of the SFE. The student chooses one of the chemistry areas according to his/her specialisation, covering either Fundamentals of Chemistry and Technology or one of the chemically oriented modules chosen in Linz. Chemistry Fundamentals subject:
- Fundamentals of Chemistry and Technology for Biological Chemists
- Fundamentals of Chemistry and Technology for Technical Chemists
The reason for the introduction of these two courses is to allow students to transfer between Biological Chemistry and Technical Chemistry at JKU, which are very similar, if students complete some of the required courses (bridge subjects). From the point of view of knowledge, the content of both of these SFE subjects is the same, the two names are given only for formal reasons and cover mainly knowledge from Organic Chemistry III, Advanced Instrumental Analysis, Spectroscopy and Structural Elucidation II.
 
The elective part of the SFE consists of the course UCH/SN12 Biological Chemistry Masters Elective, which is chosen by the students from the courses taken during their master's studies at the university where they worked on their thesis, and which is related to their thesis and thus represents a verification of the students' theoretical knowledge.
 
Furthermore, upon successful completion of the SFE, the student is given credit for the course UCH/786 Master's Examination.

Číst dál …information on state exams and defences

  • Přečteno: 21693

Přihlaste si
odběr newsletteru

Zůstaňme v kontaktu na
sociálních sítích

Branišovská 1645/31a, 370 05 České Budějovice Tel. 387 776 201 | Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.

Branišovská 1645/31a, 370 05 České BudějoviceTel. 387 776 201 | Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.

© 2024 Jihočeská univerzita v Českých Budějovicích
Cookies

1

0