Skip to main content

PRF

Doktorské studium Biofyzika

Katedra fyziky

  • Garant:

    prof. RNDr. Tomáš Polívka, PhD

  • +420 387 776 259

  • Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.

Požadavky na uchazeče

Úspěšné absolvování magisterského oboru přírodovědného (fyzika, chemie, matematika, nebo biologie) případně inženýrského směru.

Charakteristika doktorského oboru Biofyzika

Studijní obor biofyzika je zaměřen na vědeckou práci studentů v oblastech na hranicích fyziky, chemie a biologie. Studenti biofyziky se ve svých doktorských projektech zabývají především řešením problémů spadajících tematicky do biologie a/nebo chemie, a tyto problémy řeší pomocí fyzikálních metod. Nabízené doktorské projekty jsou jak teoretické tak experimentální, a dle konkrétního zaměření se mohou zabývat buď základním, nebo aplikovaným výzkumem. Během řešení doktorských projektů jsou studenti vedeni k samostatné vědecké práci, od navrhování a realizace experimentálních i teoretických přístupů, správného zpracování a interpretace naměřených nebo vypočtených dat, až po prezentaci výsledků. Okruhy témat disertačních prací vycházejí z vědeckého profilu jednotlivých odborných skupin a pokrývají širokou škálu moderních biofyzikálních metod od ultrarychlé laserové spektroskopie a spektroskopie jednotlivých molekul přes rentgenovou difrakční analýzu, molekulárně dynamické, kvantově chemické a semiempirické výpočty, techniky molekulárního modelování, až po pokročilé mikroskopické metody včetně elektronové mikroskopie nebo mikroskopie atomárních sil. Tyto metody jsou aplikovány na studium biologických systémů od úrovně molekul přes studium izolovaných proteinů, celých buněk až po modelování procesů v ekosystémech.

Okruhy témat doktorských prací

  • Ultrarychlá spektroskopie

    Spektroskopické využívající časové rozlišení v oblasti femtosekund umožňují sledovat extrémně rychlé procesy v různých materiálech. Naše projekty se pohybují na hranicích mezi fyzikou, chemií a biologií, a zaměřují se především na studium dynamiky excitovaných stavů molekul, především fotosyntetických pigmentů. Studujeme zejména procesy přenosu energie a/nebo elektronu ve fotosyntetických proteinech pomocí laserů generujících extrémně krátké světelné pulsy. Naše vědecká skupina ale také vyvíjí nové metody ultrarychlé spektroskopie jako například experimenty s multipulsní excitací, které umožňují manipulaci s populacemi excitovaných stavů molekul, nebo experimenty využívající dvoufotonovou excitaci.

    Kontaktní osoba: prof. Tomáš Polívka (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), www.polivkalab.cz

  • Studium fotosyntetických procesů pomocí optických a biochemických metod

    Fotosyntéza je složitý proces vyžadující přesnou souhru mnoha molekul a proteinů, která vede k efektivnímu využití sluneční energie a její přeměně na energii chemickou. Studentské projekty v této oblasti jsou zaměřeny na studium účinnosti přenosu energie ve fotosyntetických proteinech i složitějších komplexech obsahujících více proteinů, na mechanismy ochrany fotosyntetických organismů před nadměrným ozářením, na vztahy mezi strukturou a funkcí fotosyntetického aparátu a na další biofyzikální aspekty fotosyntézy. Tyto projekty jsou řešeny pomocí různých optických a biochemických metod jako například absorpční a fluorescenční spektroskopie, cirkulární dichroismus nebo chromatografické metody.

    Kontaktní osoby: dr. Radek Litvín (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), dr. David Bína (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Mikroskopie atomárních sil (AFM)

    AFM umožňuje detailní zobrazení povrchu a mechano-elastických vlastností, včetně jejich dynamiky u živých buněk, biologických membrán, proteinů a jejich komplexů, peptidů, polynukleotidových řetězců, organických polymerů a jejich sloučenin a to jak v plynné tak kapalné fázi. Ve vzorcích v pevné fázi např. nanočástice a nano strukturované povrchy mohou být zobrazovány mapy vodivosti a kapacitance. AFM také slouží k měření sil působících mezi všemi výše zmíněnými objekty až na úroveň studia nekovalentních vazeb vznikajících mezi jednotlivými molekulami.

    Kontaktní osoba: dr. David Kaftan (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Elektronová mikroskopie (EM)

    Projekty elektronové mikroskopie využívají technicky náročné metody, které umožňují lokalizaci jednotlivých komponent v buněčné ultrastruktuře (TEM) či povrchové morfologii vzorku (SEM). Součástí projektů je rovněž příprava biologických preparátů pro elektronovou a korelativní mikroskopii. Kromě klasické EM jsou naše projekty zaměřené i na Cryo EM strukturální studie virových částic nebo izolovaných proteinových komplexů. Výsledkem těchto projektů je 3D struktura zkoumaného preparátu. Další metoda, kterou je možné využít v naší laboratoři pro 3D struktury větších objektů (izolované organely) je elektronová tomografie.

    Kontaktní osoby: ing. Jana Nebesářová (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), dr. Zdeno Gardian (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Bio-aktivní nanostrukturované tenké vrstvy a povrchy

    Studenti se zabývají výzkum a vývojem tenkých, funkčních, nanostrukturovaných vrstev, které jsou schopné interakce s komplexy molekul; jedná se zejména o povrchy pro bio-senzory využívající metody LMR, SERS, LSPR, SPR detence; obohacené tenké vrstvy (např. vrstvy dopované antibiotiky); povrchy s funkčními vazbami atd. Nanostrukturované povrchy jsou typicky připravovány pomocí plazmatických metod PVD (Physical Vapour Deposition) nebo PECVD (Plasma Enhanced Chemical Vapour Deposition).

    Kontaktní osoba: Vítězslav Straňák (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript., Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), www.prf.jcu.cz/plasma

  • Molekulární simulace vodných roztoků a rozhraní pevná látka-kapalina

    umožňují pochopit strukturu, interakce a dynamiku iontů, molekul a biomolekul na molekulární úrovni, a objasnit molekulární původ experimentálních dat. K získání výsledků a jejich porovnání s experimentálními výsledky používáme klasickou molekulární dynamiku i kvantové výpočty, včetně ab initio dynamiky. V současné době se soustředíme na predikci signálů nelineární optiky (generace součtových frekvencí, generace druhé harmonické frekvence) a elektrokinetických jevů (elektroosmóza, elektroforéza) aplikovaných na stále složitější systémy.

    Kontaktní osoba: doc. Milan Předota (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Počítačové modelování interakcí mezi biomolekulami a jejich okolím

    Studenti pracují s výpočetními metodami pro modelování biologických systémů a zabývají se především analýzou dynamických změn v těchto systémech a jejich interakcí s okolím. Studenti pomocí tzv. molekulárního modelování a kvantově chemických výpočtů studují vztah mezi strukturou a funkcí biomolekul (proteinů a nukleových kyselin), jejich vzájemnou interakci a jejich interakci s okolím (rozpouštědel a iontových kapalin). Výsledky teoretických přístupů jsou následně srovnávány s experimentálními daty.

    Kontaktní osoby: Dr. David Řeha (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Dr. Babak Minofar (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Krystalizace a proteinová krystalografie

    s cílem připravit krystaly a určit struktury proteinů a proteinových komplexů pomocí rentgenové difrakční analýzy. Znalost detailní struktury proteinů je zásadní pro pochopení jejich funkce. Studenti se zabývají celým procesem vedoucím k určení struktury proteinu od izolace a purifikace proteinu pomocí molekulárně biologických a biochemických metod, přes vlastní přípravu krystalů až po rentgenovou strukturní analýzu. Celá řada enzymů, virových a jiných proteinů důležitých pro biomedicínu, farmakologii, biotechnologie nebo biotransformace jsou k dispozici k detailnímu studiu. 

    Kontaktní osoba a školitelé: prof. Ivana Kutá Smatanová, Ph.D. (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Taťána Prudnikova, Ph.D. (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Michal Kutý, Ph.D. (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

    https://www.prf.jcu.cz/en/uchbch/research/laboratory-of-structural-chemistry.html

  • Skládání virových částic – od modelových systémů k buněčnému zobrazování v reálném čase

    Viry jsou původci mnoha infekčních onemocnění negativně ovlivňující lidské zdraví, zemědělskou výrobu a vedoucí k značným ekonomickým ztrátám. Vývoj nových léčiv vyžaduje znalost replikačního cyklu viru v infikované buňce. Naše laboratoř se zaměřuje na RNA viry z rodiny Reoviridae, rotavirus a ptačí reovirus, které způsobují významné infekční onemocnění. Tyto viry se replikují v takzvaných viroplasmách, což jsou virem in dukované cytoplasmické struktury. Dosavadní výzkum prokázal že viroplasmy se tvoří fázovou separací, ale zůstávají v tekutém stavu. Tento projekt se zaměřuje na vývoj modelových systému pro studium této fázové separace a aplikaci nových biofyzikálních a zobrazovacích metod.

    Kontaktní osoba: doc. Roman Tůma (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

    Vedoucí: Roman Tůma & Tomáš Fessl

  • Replikace viru klíšťové encefalitidy

    Virus klíšťové encefalitidy patří do skupiny pozitivních jednovláknových RNA virů. Tyto viry se v hostitelské buňce replikují na membráně endoplasmatického retikula, kde dochází k vytvoření dynamického útvaru nazývaného replikační komplex. Navzdory tomu, že replikační komplex je nezbytný pro replikaci viru, naše informace o struktuře tohoto komplexu či interakcích vedoucích ke vzniku komplexu a replikaci virové genomové RNA jsou značně limitované. V našem přístupu kombinujeme široké spektrum metod (od molekulárně biologických po biofyzikální či strukturní), které pomohou objasnit vznik replikačního komplexu v membráně endoplasmatického retikula a replikaci virové RNA.

    Kontaktní osoba:  Zdeněk Franta Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript., Školitelé: Zdeněk Franta, Filip Dyčka (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Zdeno Gardian (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Tomáš Fessl (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.), Roman Tůma (Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.)

  • Alosterická komunikace a dynamika v membránových proteinových komplexech

    Alostericky modulované molekulové motory se účastní mnoha klíčových procesů v bakteriálních i eukaryotních buňkách. Obecnou vlastností těchto motorů je, že prochází opakovanými cykly hydrolýzy nukleotidů a že rychle přechází mezi mnoha konformačními stavy. Tyto přechody jsou realizovány za pomoci vazby nukleotidů a jejich hydrolýzou (přeměnou energie z chemické na mechanickou). Celý proces je řízen alostericky. Plné porozumění těmto procesům na molekulární úrovni tak bude od studentů vyžadovat aplikaci alosterické teorie a její další rozvoj. Práce s membránové proteiny je výrazně složitější než zkoumání těch ve vodě rozpustných, právě proto, že ke své optimální funkci vyžadují přítomnost biologické membrány. Navíc standardní biofyzikální a biochemické metody nejsou na membránové proteinové komplexy běžně aplikovatelné kvůli jejich inherentní heterogenitě, dynamice a komplexnosti jejich nativního prostředí. Proto jsme jako hlavní výzkumný nástroj zvolili  fluorescenční spektroskopii jednotlivých molekul, která si s těmito aspekty dokáže poradit. Cílem navržených projektů je zmapovat kompletní alosterickou síť regulující procesy v různých membránových proteinových komplexech za použití jedno-molekulových metod v kombinaci s in silico analýzou a hydrogen-deuterium exchange hmotnostní spektroskopií.

    Školitelé: Tomáš Fessl (fluorescence jednotlivých molekul + molekulární motory), David Řeha (in silico), Filip Dyčka (hmotnostní spektrometrie), Alexey Bondar (membránové proteiny) and Roman Tůma (makromolekulární komplexy).

    Další biofyzikální témata jsou nabízena ve spolupráci s Fakultou rybářství a ochrany vod.

Požadavky na disertační práci

Disertační práce v oboru Biofyzika musí splňovat obecné požadavky stanovené Opatřením děkana č. 62. Oborová rada Biofyziky nad rámec tohoto opatření stanovuje rozšiřující požadavky na úvod a závěr v případě, že se disertační skládá z úvodu doplněného již publikovanými pracemi. V tomto případě úvodní část musí být originální text v rozsahu alespoň 20-30 normostran (5000-7500 slov), obrázky, tabulky a citace se do tohoto rozsahu nepočítají. Úvodní část práce musí obsahovat přehled problematiky, současný stav poznání v oboru, popis použitých metod (nad rámec stručného popisu běžně používaného v publikacích), cíle disertační práce. Kromě tohoto úvodu musí disertační práce rovněž obsahovat závěr, který shrnuje výsledky disertační práce, případně naznačuje další možnosti využití výsledků prezentovaných v disertační práci.

Požadavky na státní zkoušku

Oborová rada doporučuje státní zkoušku složit během třetího roku doktorského studia. Státní zkouška se skládá ze ze dvou částí. První část obsahuje zkoušku z pilotních doktorských kurzů, které student během studia absolvoval. Druhá část je zaměřena na konkrétní problematiku souvisejícís tématem disertační práce.

Číst dál …Doktorské studium Biofyzika

  • Přečteno: 1330

ELIXIR_CZ

  • Přečteno: 384

PhotoStruk

Katedra informatiky

Název projektu: PhotoStruk - Analýza historických FOTOgrafií pro virtuální rekonSTRUKci kulturního dědictví v česko-bavorském příhraničí

Číslo projektu: 63

Hlavní cíl projektu: Hlavní cíl projektu je prezentace zaniklých lokalit Šumavy díky virtuálním rekonstrukcím z historických fotografií. Projekt reaguje na potřebu posilovat společnou identitu, která je tvořena historickou provázaností obyvatelstva. Snaží se udržitelným způsobem zachovat a zhodnotit společné dědictví. Dostupnými i inovovanými nástroji pomůže zvýšit atraktivitu dotačního území prostřednictvím zachování a zhodnocení společného kulturního a přírodního dědictví.

Více informací naleznete zde: https://photostruk.cz/info

Projekt Photostruk je financován Evropskou unií v rámci Programu přeshraniční spolupráce Česká republika - Svobodný stát Bavorsko Cíl EÚS 2014 - 2020 (Interreg V) z Evropského fondu pro regionální rozvoj.

Číst dál …PhotoStruk

  • Přečteno: 865

Bakalářské studium

Katedra molekulární biologie a genetiky

Bakalářské studium

Katedra zajišťuje následující kurzy v bakalářském studiu:

KMB 023 Základy buněčné biologie ZS 5 'doc. Mgr. Tomáš Doležal, Ph.D.'
KMB 215 Bioinformatics Project ZS 8 'prof. Ing. Miroslav Oborník, Dr.'
KMB 219 Introduction to Cell Biology ZS 2 'doc. Mgr. Tomáš Doležal, Ph.D.'
KMB 240 Genetika LS 5 'RNDr. Magda Zrzavá, Ph.D.'
KMB 250 Molekulární biologie ZS 6 'RNDr. Alena Bruce, Ph.D.', 'RNDr. Alena Zíková, Ph.D.'
KMB 358 Introduction to Genomics LS 3 'Dr. Alexander William Bruce, Ph.D.', 'Mgr. Aleš Horák, Ph.D.'
KMB 601 Biologie buňky II. ZS 4 'prof. RNDr. Ivo Šauman, Ph.D.'
KMB 605 Introduction to Bioinformatics LS 6 'prof. Ing. Miroslav Oborník, Dr.'
KMB 608 Základní metody molekulární biologie ZS 8 'Mgr. Adam Bajgar, Ph.D.'
KMB 758 Molecular Biology and Genetics I ZS 3 'Dr. Alexander William Bruce, Ph.D.'
KMB 770 Methods in Molecular Biology ZS 4 'Mgr. Lenka Chodáková, Ph.D.'

Prezentace studentů
Studenti, kteří vypracovávjí svou bakalářskou práci na Katedře molekulární biologie a genetiky, jsou povinni během svého bakalářského studia 2x prezentovat svou práci (opatření děkana D48). Student si v daném semestru, kdy chce prezentovat, zapíše kurz KMB 180 Seminář mag. oborů genetika (garant Aleš Horák). Seminář probíhá společně pro bakaláře i magistry blokově (o termínu bude informovat garant během semestru), jeden seminář je věnován přípravě, jak dobře prezentovat, a pak podle počtu zapsaných studentů v několika blocích probíhají prezentace studentů. 2 zápočty z tohoto kurzu slouží jako ověření povinnosti prezentovat 2x za své studium. Více informací zde: Prezentace magisterských studentů (v rámci KMB 180)

Katedra zajišťuje část bakalářské státní závěrečné zkoušky Buněčná biologie a genetika:

Otázky pro bakalářské zkoušky – Buněčná biologie a genetika

Část A: Otázky z buněčné biologie
1. Struktura a funkce organel v eukaryotické buňce
2. Buněčná energetika a hlavní metabolické dráhy
3. Struktura buněčných membrán, transport látek přes membrány, membránový potenciál
4. Cytoskelet: struktura a funkce, motorové proteiny
5. Vnitrobuněčné oddíly, třídění a transport proteinů uvnitř buňky
6. Mechanika buněčného cyklu: fáze buněčného cyklu, mitóza, meióza, „crossing over“
7. Buněčná signalizace: signální dráhy, receptory, typy buněčných signalizací.
8. Struktura a funkce DNA
9. Struktura a funkce RNA
10. Replikace, transkripce a translace
11. Struktura a vlastnosti proteinů
12. Rostlinná buňka: odlišnosti od živočišné buňky, chloroplasty, fotosyntéza, vakuoly, buněčná
stěna.

Část B: Otázky z genetiky
13. Chromosomy: struktura chromosomu, početní a strukturní chromosomální aberace, jejich
dopad na fenotyp a význam pro evoluci druhu
14. Genom: struktura genomu, porovnání velikostí genomů virů, prokaryot a eukaryot, paradox
hodnoty C, repetitivní DNA
15. Mutace: typy mutací podle rozsahu a podle dopadu na fenotyp, mutageny, reparace DNA
16. Mendelismus a genetická analýza: vysvětlení základních genetických pojmů (gen, alela,
homozygot, heterozygot, dominance, recesivita, haplosuficience, haploinsuficience,
kodominance, penetrance, expresivita, pleiotropie), křížení mono- a dihybridů do F1 a F2,
kombinační čtverec, rozvětvovací metoda
17. Meióza a vznik pohlavních buněk: průběh a funkce meiózy, crossing-over, rozchod alel u monoa
dihybrida, vznik pohlavních buněk u rostlin a živočichů
18. Genové interakce: co jsou to genové interakce, charakterizace jednotlivých genových interakcí
19. Kvantitativní genetika: genetická vs. environmentální složka, heritabilita v širokém a úzkém
slova smyslu, heterózní efekt
20. Vazba genů: co je to genetická vazba, jak se určuje její síla, vazbová fáze
21. Dědičnost a pohlaví: způsoby determinace pohlaví, pohlavní chromosomy, evoluce pohlavních
chromosomů, dědičnost vázaná na pohlaví, příklady znaků vázaných na pohlaví, pohlavně
ovlivněných a ovládaných, kompenzace genové dávky
22. Populační genetika: Hardy-Weinbergova rovnováha, jaké jsou její podmínky a co a proč jí
narušuje, typy selekce, genetický drift, fitness, dynamická rovnováha a její příklady
23. Genetika bakterií: srovnání prokaryotního a eukaryotního genomu, operony, plazmidy, jak
bakterie získává novou DNA (transformace, transdukce a konjugace), lytický a lysogenní cyklus
bakteriofága, SOS reparace DNA, CRISPR-Cas9
24. Genetika organel: které organely mají DNA a proč, jak vypadá genom organel, projevy
cytoplazmatické dědičnosti, heteroplasmie
25. Epigenetika: funkce epigenetických změn, epigenetické nástroje (metylace DNA, modifikace
histonů, nekódující DNA), genomový imprinting, paramutace

 

Číst dál …Bakalářské studium

  • Přečteno: 2172

Museum Uploaded

  • Seznam štítků: PŘF

Katedra informatiky

Program přeshraniční spolupráce Česká republika - Svobodný stát Bavorsko Cíl EÚS 2014 – 2020

Museum Uploaded – Digitální technologie pro přeshraniční interaktivní spolupráci muzeí 

Partneři projektu: Stadt Deggendorf, Prácheňské muzeum v Písku, Technische Hochschule Deggendorf

Harmonogram: 1. 9. 2017 – 31. 8. 2020

Rozpočet projektu: 1 830 330,39 EUR

Cílem projektu je ve vzájemné spolupráci partnerů vytvořit interdisciplinárně, návštěvnicky zaměřené, bezbariérové a multimediální prezentace dochovaného kulturního dědictví a současně dlouhodobě a flexibilně vyvíjet nové aplikované technologie v oblasti muzejnictví a archivnictví. 

Vedoucím partnerem projektu je Městské muzeum v Deggendorfu (Stadt Deggendorf – Stadtmuseum), dalšími partnery jsou Prácheňské muzeum v Písku a Technická vysoká škola v Deggendorfu.
Projekt má za cíl inovovat stávající a vyvinout zcela nové technologie, které budou následně poprvé využity v oblasti muzejnictví. Technická vysoká škola v Deggendorfu (Kampus Freyung) a Jihočeská univerzita v Českých Budějovicích (Katedra informatiky a Ústav archivnictví a PVH) spolupracují na vývoji nového digitálního výstavního systému. Muzea v Deggendorfu a Písku přitom slouží jako vzorové případové studie. Při společné vědecké práci obou muzeí budou shromážděna a za pomoci muzejně-didaktických metod s využitím digitálních strategií zpracována témata a materiály, které se dotýkají kulturního dědictví v přeshraničním kontextu. Muzea zde budou fungovat jako laboratoře, ve kterých se společně diskutují různé vývojové přístupy vysokých škol k prezentaci a vizualizaci muzejních materiálů, ověřuje se jejich vhodnost pro využití a zachycuje zpětná vazba. Zvláštností této koncepce z perspektivy informačních technologií a mediální tvorby je propojení digitálních médií s využitím moderních serverových a internetových technologií, jak pro potřeby stálých expozic, tak také pro nové formy prezentace s cílem ztvárnění prostorových a časových údajů. Důležitou součástí tohoto technického řešení je vytvoření centrálního systému uchování dat, který splňuje požadavky na dlouhodobou archivaci elektronických dat. Tento udržitelný systém zajistí trvalou vizualizaci dat a metadat v muzejních prezentacích a umožní výměnu dat s jinými institucemi.
Tyto systémy budou v muzeích implementovány pro potřebu prezentování informací: Městské muzeum Deggendorf, jeden z největších výstavních domů v Dolním Bavorsku, a Prácheňské muzeum v Písku, regionální muzeum vyznamenané evropským oceněním, připravují v rámci společného projektu aktuální a atraktivní nové výstavy i rozšíření stávajících expozic a jejich vybavení moderními technologiemi.

Číst dál …Museum Uploaded

  • Přečteno: 789

Přihlaste si
odběr newsletteru

Zůstaňme v kontaktu na
sociálních sítích

Branišovská 1645/31a, 370 05 České Budějovice Tel. 387 776 201 | Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.

Branišovská 1645/31a, 370 05 České BudějoviceTel. 387 776 201 | Tato e-mailová adresa je chráněna před spamboty. Pro její zobrazení musíte mít povolen Javascript.

© 2024 Jihočeská univerzita v Českých Budějovicích
Cookies

1

0