GeoMicLink: Microbial imprint in catchment scale nutrient retention
To evaluate links among pools, fluxes and stoichiometry of carbon and nutrients in microbe-soil-water system on acidification and eutrophication gradients across forested catchments. To determine and quantify the role of microbes in nutrient retention and include microbes into modelling framework.
The availability of nitrogen (N) and phosphorus (P) controls many aspects of ecosystem function including ecosystem productivity, organic matter decomposition and consequent ecosystem elements retention including carbon (C) storage. Since 1994 a network of forested catchments (GEOMON) has been used for biogeochemical assessment of nutrient fluxes of semi-natural forest ecosystems in the Czech Republic. We found stoichiometric imbalance of carbon and nutrients between stream and soil suggesting important role of soil microbial transformations in nutrient retention. We propose that by combining data on long-term catchment solute fluxes, with catchment soil chemistry, microbial activity and community characteristics along acidification and eutrophication gradient we will be able to elucidate and generalized (regional extent) the role of microbes in nutrient retention at the catchment scale. Furthermore, obtained data will be used to calibrate updated biogeochemical model MAGIC to correctly predict soil and stream chemistry under changing deposition loads of both acidity and nitrogen.